Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Get started with the Azure Cosmos DB for Apache Gremlin client library for Python to store, manage, and query unstructured data. Follow the steps in this guide to create a new account, install a Python client library, connect to the account, perform common operations, and query your final sample data.
Library source code | Package (PyPi)
Prerequisites
An Azure subscription
- If you don't have an Azure subscription, create a free account before you begin.
The latest version of the Azure CLI in Azure Cloud Shell.
- If you prefer to run CLI reference commands locally, sign in to the Azure CLI by using the
az login
command.
- If you prefer to run CLI reference commands locally, sign in to the Azure CLI by using the
- Python 3.12 or later
Setting up
First, set up the account and development environment for this guide. This section walks you through the process of creating an account, getting its credentials, and then preparing your development environment.
Create an account
Start by creating an API for Apache Gremlin account. Once the account is created, create the database and graph resources.
If you don't already have a target resource group, use the
az group create
command to create a new resource group in your subscription.az group create \ --name "<resource-group-name>" \ --location "<location>"
Use the
az cosmosdb create
command to create a new Azure Cosmos DB for Apache Gremlin account with default settings.az cosmosdb create \ --resource-group "<resource-group-name>" \ --name "<account-name>" \ --locations "regionName=<location>" \ --capabilities "EnableGremlin"
Create a new database using
az cosmosdb gremlin database create
namedcosmicworks
.az cosmosdb gremlin database create \ --resource-group "<resource-group-name>" \ --account-name "<account-name>" \ --name "cosmicworks"
Use the
az cosmosdb gremlin graph create
command to create a new graph namedproducts
.az cosmosdb gremlin graph create \ --resource-group "<resource-group-name>" \ --account-name "<account-name>" \ --database-name "cosmicworks" \ --name "products" \ --partition-key-path "/category"
Get credentials
Now, get the password for the client library to use to create a connection to the recently created account.
Use
az cosmosdb show
to get the host for the account.az cosmosdb show \ --resource-group "<resource-group-name>" \ --name "<account-name>" \ --query "{host:name}"
Record the value of the
host
property from the previous commands' output. This property' value is the host you use later in this guide to connect to the account with the library.Use
az cosmosdb keys list
to get the keys for the account.az cosmosdb keys list \ --resource-group "<resource-group-name>" \ --name "<account-name>" \ --type "keys"
Record the value of the
primaryMasterKey
property from the previous commands' output. This property's value is the key you use later in this guide to connect to the account with the library.
Prepare development environment
Then, configure your development environment with a new project and the client library. This step is the last required prerequisite before moving on to the rest of this guide.
Start in an empty folder.
Import the
gremlinpython
package from Python Package Index (PyPI).pip install gremlinpython
Create the app.py file.
Object model
Description | |
---|---|
GremlinClient |
Represents the client used to connect and interact with the Gremlin server |
GraphTraversalSource |
Used to construct and execute Gremlin traversals |
Code examples
Authenticate client
Start by authenticating the client using the credentials gathered earlier in this guide.
Open the app.py file in your integrated development environment (IDE).
Import the following types from the
gremlin_python.driver
library:gremlin_python.driver.client
gremlin_python.driver.serializer
from gremlin_python.driver import client, serializer
Create string variables for the credentials collected earlier in this guide. Name the variables
hostname
andprimary_key
.hostname = "<host>" primary_key = "<key>"
Create a
Client
object using the credentials and configuration variables created in the previous steps. Name the variableclient
.client = client.Client( url=f"wss://{hostname}.gremlin.cosmos.azure.com:443/", traversal_source="g", username="/dbs/cosmicworks/colls/products", password=f"{primary_key}", message_serializer=serializer.GraphSONSerializersV2d0() )
Insert data
Next, insert new vertex and edge data into the graph. Before creating the new data, clear the graph of any existing data.
Run the
g.V().drop()
query to clear all vertices and edges from the graph.client.submit("g.V().drop()").all().result()
Create a Gremlin query that adds a vertex.
insert_vertex_query = ( "g.addV('product')" ".property('id', prop_id)" ".property('name', prop_name)" ".property('category', prop_category)" ".property('quantity', prop_quantity)" ".property('price', prop_price)" ".property('clearance', prop_clearance)" )
Add a vertex for a single product.
client.submit( message=insert_vertex_query, bindings={ "prop_id": "aaaaaaaa-0000-1111-2222-bbbbbbbbbbbb", "prop_name": "Yamba Surfboard", "prop_category": "gear-surf-surfboards", "prop_quantity": 12, "prop_price": 850.00, "prop_clearance": False, }, ).all().result()
Add two more vertices for two extra products.
client.submit( message=insert_vertex_query, bindings={ "prop_id": "bbbbbbbb-1111-2222-3333-cccccccccccc", "prop_name": "Montau Turtle Surfboard", "prop_category": "gear-surf-surfboards", "prop_quantity": 5, "prop_price": 600.00, "prop_clearance": True, }, ).all().result() client.submit( message=insert_vertex_query, bindings={ "prop_id": "cccccccc-2222-3333-4444-dddddddddddd", "prop_name": "Noosa Surfboard", "prop_category": "gear-surf-surfboards", "prop_quantity": 31, "prop_price": 1100.00, "prop_clearance": False, }, ).all().result()
Create another Gremlin query that adds an edge.
insert_edge_query = ( "g.V([prop_partition_key, prop_source_id])" ".addE('replaces')" ".to(g.V([prop_partition_key, prop_target_id]))" )
Add two edges.
client.submit( message=insert_edge_query, bindings={ "prop_partition_key": "gear-surf-surfboards", "prop_source_id": "bbbbbbbb-1111-2222-3333-cccccccccccc", "prop_target_id": "aaaaaaaa-0000-1111-2222-bbbbbbbbbbbb", }, ).all().result() client.submit( message=insert_edge_query, bindings={ "prop_partition_key": "gear-surf-surfboards", "prop_source_id": "bbbbbbbb-1111-2222-3333-cccccccccccc", "prop_target_id": "cccccccc-2222-3333-4444-dddddddddddd", }, ).all().result()
Read data
Then, read data that was previously inserted into the graph.
Create a query that reads a vertex using the unique identifier and partition key value.
read_vertex_query = "g.V([prop_partition_key, prop_id])"
Then, read a vertex by supplying the required parameters.
matched_item = client.submit( message=read_vertex_query, bindings={ "prop_partition_key": "gear-surf-surfboards", "prop_id": "aaaaaaaa-0000-1111-2222-bbbbbbbbbbbb" } ).one()
Query data
Finally, use a query to find all data that matches a specific traversal or filter in the graph.
Create a query that finds all vertices that traverse out from a specific vertex.
find_vertices_query = ( "g.V().hasLabel('product')" ".has('category', prop_partition_key)" ".has('name', prop_name)" ".outE('replaces').inV()" )
Execute the query specifying the
Montau Turtle Surfboard
product.find_results = client.submit( message=find_vertices_query, bindings={ "prop_partition_key": "gear-surf-surfboards", "prop_name": "Montau Turtle Surfboard", }, ).all().result()
Iterate over the query results.
for result in find_results: # Do something here with each result
Run the code
Run the newly created application using a terminal in your application directory.
python app.py
Clean up resources
When you no longer need the account, remove the account from your Azure subscription by deleting the resource.
az cosmosdb delete \
--resource-group "<resource-group-name>" \
--name "<account-name>"