你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn。
使用 Azure 数据工厂将数据存储、移动和处理服务组成自动的数据管道Compose data storage, movement, and processing services into automated data pipelines with Azure Data Factory
详细了解数据工厂,并通过使用 Python 创建数据工厂和管道快速入门来入门。Learn more about Data Factory and get started with the Create a data factory and pipeline using Python quickstart.
管理模块Management module
使用管理模块在订阅中创建和管理数据工厂实例。Create and manage Data Factory instances in your subscription with the management module.
安装Installation
使用 pip 来安装包:Install the package with pip:
pip install azure-mgmt-datafactory
示例Example
在“美国东部”区域的订阅中创建数据工厂。Create a Data Factory in your subscription on the East US region.
from azure.common.credentials import ServicePrincipalCredentials
from azure.mgmt.resource import ResourceManagementClient
from azure.mgmt.datafactory import DataFactoryManagementClient
from azure.mgmt.datafactory.models import *
import time
#Create a data factory
subscription_id = '<Specify your Azure Subscription ID>'
credentials = ServicePrincipalCredentials(client_id='<Active Directory application/client ID>', secret='<client secret>', tenant='<Active Directory tenant ID>')
adf_client = DataFactoryManagementClient(credentials, subscription_id)
rg_params = {'location':'eastus'}
df_params = {'location':'eastus'}
df_resource = Factory(location='eastus')
df = adf_client.factories.create_or_update(rg_name, df_name, df_resource)
print_item(df)
while df.provisioning_state != 'Succeeded':
df = adf_client.factories.get(rg_name, df_name)
time.sleep(1)