TextContent Class
This represents text response content.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
Constructor
TextContent(*, inner_content: Any | None = None, ai_model_id: str | None = None, metadata: dict[str, Any] = None, content_type: Literal[ContentTypes.TEXT_CONTENT] = 'text', text: str, encoding: str | None = None)
Parameters
Name | Description |
---|---|
inner_content
Required
|
Any - The inner content of the response, this should hold all the information from the response so even when not creating a subclass a developer can leverage the full thing. |
ai_model_id
Required
|
str | None - The id of the AI model that generated this response. |
metadata
Required
|
dict[str, Any] - Any metadata that should be attached to the response. |
text
Required
|
str | None - The text of the response. |
encoding
Required
|
str | None - The encoding of the text. |
Keyword-Only Parameters
Name | Description |
---|---|
inner_content
Required
|
|
ai_model_id
Required
|
|
metadata
Required
|
|
content_type
|
Default value: text
|
text
Required
|
|
encoding
Required
|
|
Methods
from_element |
Create an instance from an Element. |
to_dict |
Convert the instance to a dictionary. |
to_element |
Convert the instance to an Element. |
from_element
Create an instance from an Element.
from_element(element: Element) -> _T
Parameters
Name | Description |
---|---|
element
Required
|
|
to_dict
Convert the instance to a dictionary.
to_dict() -> dict[str, str]
to_element
Convert the instance to an Element.
to_element() -> Element
Attributes
content_type
content_type: Literal[ContentTypes.TEXT_CONTENT]
encoding
encoding: str | None
tag
tag: ClassVar[str] = 'text'
text
text: str